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Approximate equations of short waves propagating in a2 moving, inhomogeneous, vis-
cous and heat conducting medium are derived, These equations include the principal
nonlinear and dissipative terms, and make possible the description of the two-dimen-
sional structure within the wave, Two limiting cases of the problem on propagation of
sound impulses are considered, The exact particular solution is obtained for the case
when the influence of the dissipative terms is vanishingly small, i.e, when the med=
ium can be assumed perfect, and this solution in turn yields the laws of decay of weak
shock waves in a2 moving inhomogenous nonviscous gas with zero heat conductivity.
These laws were investigated before in [*~*], but they were obtained for the first time
as the result of a straightforward solution of the first approximation equations describ=-
ing the gas flow within the wave, Asymptotic form of the sound impulses and the laws
of decay over very long periods of time are principally governed by the dissipative
terms, and nonlinear terms are not essential at this stage.

f. We consider a problem concerning the propagation of sound waves in a moving,
inhomogenous, viscous and heat conducting mediuni. Let ¢ denote time: &£, p, s are
Cartesian coordinates; v is mass velocity vector with components Uy, vy, v, gx/ Ey» 83
are components of the vector of acceleration due to gravity; p is density; p is pressure;
a is adiabatic velocity of sound; A, A, are the first and second viscosity coefficients;
% is the heat conductivity coefficient; v is the ratio of specific heaw at constant pres-
sure ¢, and constant volume ¢, , and a is the thermal expansion coefficient. Then
we can write the following closed system of equations describing the flow of an arbitrary
two-parameter medium in the form [4-%)

ap dpv;

ot g = (1)

v dv ap . do, Jv 9 v,
p(g;‘+ "dm) == + P8 +5;;{M(5;;+3;-:>}+r{(h—~3~h>3;;] (1.2)

3
Zy
ap ap ap ap als 3 % [y dp &
7—“’35'“»‘(&;““’&;)'4";;,9—;*[” ?a?;‘é}';]**
A (97 v \2 2 av’.)a
+T(§;;+5;; +(l~f—-§2-x) 3z, (1.3)

The indices i, /, k assume the values 1, 2 and 3 and, as usual, repeated indices
denote summation, Temperature 7 and specific entropy ¢ can, thetefore, be found
from [&:#]

pa*a Tds = cp(dp — a¥dp), pa*adl = ydp — a¥dp (1.4)

Let now a wave propagate through an unperturbed medium whose parameters vo;, pe,
Po,... are known functions of coordinates, and let the differences between the values
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of these parameters within the wave denoted by wvey, po, pPo.... and the unperturbed val-
ues be small, We can then assume, as in [7}, that the unperturbed flow of the medium
can be described in terms of the equations for a perfect gas flow, resulting from (1.1) -
(1.3)ywhen A =Ag=%=0.

apovoj o ap ap, ap
_ ol 0 0 o)
9z; 0, Povox oz, — Oz, + Poye ok (6::“ —a? a;k) =0 (1.5)

In the acoustic approximation, the velocity of the sound wave relative to the gas
molecules will be equal to the unperturbed velocity of sound, therefore the wave in

question can be identified with the C,-characteristic ¢ (¢, z,) = 0 of the equations
of motion of a perfect gas, which can be obtained within the same approximation from

(*]
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Characteristic curves of (1. 6) which coincide, in our approximation, with the bi-
characteristics of the Euler equations, can be regarded as wajectories of the elements
of the wavefront surface or as rays [8]. They are given by the following ordinary diff-
erential equations:

dxi d"l a"o avok
@& =tut et g =My (aT,. + "% .7

Here n; denote the components of the unit vector n normal to the characteristic
surface and &;; are Kronecker deltas. Since vy, a,, as well as their derivatives are
known, the solutions of (1.6) and (1.7) can be obtained in advance and written as

Gt zp) =0, x,°=x"(t, zop), m° =0t Zop) 1.8)

where g, denote the coordinates of an initial point defininga certain ray. This ray
intersects the characteristic surface at the point (z,°yand the superscript ° will deno-
te the quantities taken at this point and depending only on time. Coordinates of (z3°)

are given by (1.8),
Let us inroduce a moving Cartesian coordinate system z;’ (i, £5,25) associated with

the wave. Formulas for z,° in(1.8) will define the new origin. Since the basic chan-
ges in the wave take place in the direction normal to the wavefront, we shall direct
the #i-axis along the vector m normal to the characteristic. Components n;° are
given by the last formula of (1.8). Two other axes, z,;, %3 of the new coordinate sys-
tem lie in the plane tangential to the characteristic. The actual choice of these axes
is not essential, but it can be shown that the tansformation to new coordinates is sim-
pler, when the components of two mutually perpendicular unit vectors e; and e,

satisfy, in the tangent plane, the following differential equations:

de,° o [3a,° avok’ . des" day® v, ° o
a ([hj + oz, >e”' ' da M (Ox’. + 3z )e”'
whose solutions
e = ey° (8, Tr),  eg® = ey° (t, Top) (1.9)

can also be assumed known in advance,
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We note that the equations for dn;°/ds, dey;° [ dt, dey;® [ dt are not independent,

consequently an additional condition of uniqueness of the corresponding coordinate
vector is required for the closure of each system,

with (1.8) and (1.9) known, we can establish the transformation formulas relating
the fixed and moving coordinate systems

t=t, zxi=zx*()+e;* () x5 R
, t ‘o( # (. J (ey* =1,°) (1.10)
=t gz =e; (t){z; —z;" (1))

We shall assume that the characteristic surface ¢ (¢, £,) = 0 moving through the
physical space, passes through each of its points once only. Then the formulas (1.8)
and (1, 9) define thtee vectors ¢,°, e,®, ,® at any point at that instant at which the

characteristic passes through it. Let us assign the above wriplet of vectors to this point,
i.e. let us assume that three mutually perpendicular unit vectors e; = n, e; = 1y, € =
= Ty are given at each point and that their components ¢;;(x,) depend only on the
coordinates of this point, Projections of the vector v’ at this point on the directions
defined above will be denoted by v,’, v, v, , respectively, and they will be rela-
ted to the components of v’ in the moving coordinate system by the formulas

v/ = n‘v"' + Ty Py A Ty Vg (1.11)

where ny,Ty4, Ty denote the components of m, 7, Ty in the new coordinate system,

Let us now assume that the gas flow in question represents a wave which is not only
weak, but also short, i.e. that the dimensions of the region in which the perturbations

are concentrated and, particularly, the characteristic wavelength A (in the n~th dir-
ection) are small, compared with the radius of curvature of its front and with the cha-
racteristic size of the inhomogeneity of the medium. We shall denote the smaller of

the above two quantities by L , and the characteristic size of the wave in the plane

tangent to its wavefront by A . The excess values of all the parameters vary more
slowly in this plane, and there are no preferred directions, We shall also denote the

typical relative values of the longitudinal and transverse components »,’ and ve,',
v+s" of the perturbed velocity vector by & and w respectively, assuming at the
same time that the density, pressure and sound velocity perturbations have the same
order of smallness € as o,
Let us convert to dimensionless variables in the new coordinate system

zy = LAz, z3=LAxzy*, z3=LAxy*, t'=(L [ag)0t*
Vot = Goo¥pt™, 8= GooBe®,  Po == Pan®Pe’s  Poo = PooPe™ (1.12)

Un' = a¥p%, V) = 00 %, v = G %

' =agnea’™,  p’=pedwEp’™, p'=puep’™

Here a4 and pgg are constant (along the ray) values of the velocity of sound and
density at the origin (z,,) of the ray, all dimensionless quantities accompanied by the
multiplication cross superscript are of the order of unity and A, e, @ are small compa-
red with unity.

Few more remarks are convenient at this point before passing to the process of trans-
forming the initial equations,

We find that in the short waves the velocity component and the derivatives of all the
flow parameters in the direction normal to the surface of the wavefront exceed in mag-

nitude the corresponding quantities perpendicular to the normal., Thus we can assume
that [*#]

v<ge, A<LA (1.13)
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The assumption that A<€6 eliminates the usual case of linearization of the Navier-

Stokes equations. ’
We also introduce the Reynolds, Peclet and Prandtl numbers

Poo%0 L Pgo%oo’p L Np,
Re =Gt Tar Nre=" e Npe=F (114

N

Viscosity and heat conductivity coefficients are, as usual, of the same order of mag-
nitude, and sufficiently small for [%®]

1/Npe<€A, Np,~1 (1.15)

to hold.

The quantities Ay, As %, and ¢p» @ T are known functions of state and can be assu-
med given outside the wave. Their perturbations can be neglected in the first approxi-
mation since, by (1.15), their inclusion complicates only slightly the computations
without affecting the final approximate equations [®].

By (1.12), all dimensionless values of the parameters of the unperturbed motion of
the medium and of their derivatives are of order unity, Compared with them, their
perturbations are small, and their maximum order is ‘e in the adopted notation. Since
the dimension of the perturbed region is also small, the gradients in the perturbed zone
(maximum order e{A) are comparable with the gradients of the initial distributions.
But in this case the curvatures of the perturbation profiles (maximum order €/ A%)
should be even more siﬁnificant compared with the curvatures of the distributions of the
unperturbed values of the parameters. This therefore leads to yet another inequality

{<el A (1.16)

Finally, we note that although the matrix of the components 7i» %2 Ta4» is nearly
diagonal within the wave, i.e, atsmall (compared with I) distances from the new
coordinate origin, the final approximate equations may include the derivatives of the
components whose values are nearly zero and these derivatives may, in general, be of
order unity. In addition, we must distinguish between the quantities with and without
the superscript ° , since the only purpose of the former is to define the new coordina-
te system, while the latter may undergo variation within this system. Although these
quantities differ little from each other in the perturbed zone, nevertheless the final
equations include the term arising from these differences. In [7], which deals with
weak shock waves generated by an airplane moving through an inhomogeneous atmos-
phere with dissipation, neilect of the above circumstance is reflected In the approxi-
mate equation obtained, similar remark is made in [10],

Let us insert (1,12) recalling (1.11), into the perturbation equations obtained from
(1.1) - (1.3) after eliminating from the latter the terms corresponding to an unpertur-
bed flow (1.5) and converting to the moving coordinate system lig means of (1.10).

We shall use the relations (1.11) and (1,13) - (1, 16), retaining the major terms only
in the resulting expressions. Omitting the complicated derivation, we shall give the
resulting approximate equations for the short waves (neglecting the multiplication cross
superscript)

P =(Pa°/@0°) ¥n’, P =00"a,"0p

o 974 e dvy @ vy __e_av,, 1.47)
——1-\— 32‘] =—K 3.’!:2 a A 611 A a.’t; ( :
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where

{0 dl *a,* an* v .*
me=explg (TG 4 ar St omer — 1)

al’ 4 e g\
po®/ %\
+ o ]""} =g (T)
Von == Voilj,  Uop =G0 + Von, M =1/2p"2a"2[3p /3 (1/p)%],

The expression for M®° in which the integral was taken along the ray, was integra-
ted in [11), The quantity u,, represents the projection of the vector of the so-called
ray velocity u, = aon + v, with which the wavefront surface propagates through the
medium on the normal to this surface and f denotes the area of the wavefront surface
element contained within the elementary ray tube (i.e. a tube of small cross section
generated by the rays). We note that all the quantities accomlpanied by the superscript

*depend only on time, and shall omit this superscript as well.

The first two formulas of (1.17) follow from the equations of continuity and from the
projection of the Navier-Stokes equation on the &,-axis. Their significance is that
in our approximation the gas is compressed adiabatically and that the Riemann relation
characterizing a plane running sound pulse through the medium [*] holds. The next
two equations of (1.17) obtained from the projections of the Navier-Stokes equations
onthe z;-and xy-axes with the condition w/A = e/ A characterizing structurally
inhomogeneous flows indicate the absence of vortices in the perturbed zone. Thus,
simplifying continuity equations (1.1) and Navier-Stokes equations (1.2), we also ob=-
tain expressions chara cterizin§ motions in perfect media. The dissipation terms app-
ear in the last equation of (1.17), which follows from the mass transport equation (1. 3)
with allowance for (1,1), (1.2) and from the first two equations of (1.17).

In the most general case 6 ~1, & ~ A, @ ~ A", A ~ A% 1} Ng ~ A, the equa-
tions defining the short waves become

ov_,’ o’ v_ '
13 n <3 — n
oz, - dz; ° 0.1'1 6::, (1 . 1 8)
o’ o’ dlnu, dv * . I ' In M
_n. D on""n | Go 12 3 4
ar +mov, 0z, +n g 9z, + 2 (81, + 9z )+ ot n=

1 —1\0%,°
=214 +’f__)_n_
2p0 Npp/ 9z

Equations most closely resembling (1.18) are given in [?]). However, the motion
within the wave was assumed to be immediately quasionedimensional; certain other
differences already noted are also involved.

2. We shall now consider short waves with quasi onedimensional structure and the
corresponding condition w<£ eA, From the last equation of (1,17) we have

100 e 9 dinu, 30  dlnM 1 r—1\ &
T TA™ gt n e ot T a ”=A2Nne( Npr)_az,’ 21

where both principal nonlinear and dissipative terms are retained, and p,’ is replaced
by o',

First let us assume that the dissipative factors in (2.1) can be neglected, i.e, that
1/Nge <€ A% In this case (2. 1) yields the following equation describing the gas flow
in a weak wave propagating in a moving inhomogenous perfect medium

' Lo’ dlnue, dv° dinM
Fe + mov a_::,'*'"_dt_a_xl'*'T":O 0~1,e~A) 2.2)
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If we now omit the second and third terms containing the derivative v’/ 9z, from
the left-hand side of this equation, the equation of geometrical acoustics for the wave=-
fronts will result, This is easily integrated yielding the well known law of variation of
sound-wave amplitude [4:10,13]

oL@ (&)"' 23

where the function f (z,) defines the wave profile which does not vary this approxima=-
tion so that its choice is arbiwrary. All the same, if we wish to follow the behavior oOf
both, the wavefront and the wave profile, then retention of the linear term z; (d Inu,,,/
/dt) (3v° / dz,) is advisable even in the acoustic approximation, This term appears as
a result of the fact that a2 wave propagates -in an inhomogeneous movin§ atmosphere

€

with varying velocity, and this results in "linear” distortion of its profile.

It is clear that the acoustic solution will not yield the asymptotic laws of decay of
perturbations as ¢ - oo , even for a perfect medium. This is obtained simply by sub=
stituting (2. 3) into (2.2) with ¢ tending to infinity.

The asymptotic laws of decay of sound pulses in an inhomogeneous moving medium
can be obtained from (2,2), As ¢ — oo, the profiles of weak shock waves tend to a
linear form [4] and the gas flow behind such waves can be described by the following
solution of (2,2):

, 23 my -1
v = Mgy (c; -+ Smdt) (2.4)
{

where ¢, is an arbitrary constant, the integration is carried out along a ray and ¢,
coincides with the origin of this ray,

Let us now obtain the law of variation of the intensity »,’ of the shock wave along
the ray. Both the intensity and the wavelength A, depend on time only, and the dep~-
endence follows from (2.4).

The velocity ¥ of protpagation of a weak shock wave to within the first order of
smallness is given in the fixed coordinate system by [3:4]

. Ag du 1
N=um+;:-;—mm+7mov.'

Taking into account conversion formulas (1, 10) together with (1,8) and (1.9), we
have

d Ao du i
@ = ;:“n T -+ g mavy’ 2.5

Differentiating (2,4) between the quantities v,” and A, along the trajectory of the
shock wavefront and use of (2.5) we obtain the following expression for "w,’:

t
_i_dv,’ {1 me mg ~1 1 dM
l?.' dt -+ —'2" M“on (c! -+ S M“m df) -+ 7 —dT =0 ‘2.6)
ts

which on integration yields
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where ¢, is an arbizary constant.

If the amplitude ¥ and the wavelength A, of the shock wave at ¢ = t,, are both
known, then we.can find ¢, and ¢, by substituting these values into (2.7) and setting
t= 1.

Formulas (2. 7) express the well known [*™%1'] laws of decay of weak shock waves
in a moving inhomogenous medium, but were arrived at in the present paper by obtain-

ing the exact solution of the approximate equations derived above, As before, they
remain valid as long as A, << L,

In the second limiting case [4*] when the time intervals become very long (8 ~ 1,
e KA, 1/ Ng, ~ A%, dissipative factors begin to play a decisive role. Nonlinear
term in (2. 1) can be neglected, yielding

v’ dlnug, 8v* dlnM |, | T—1\ 3
o trn " et A" =2E(’+ Npr)ax,-
The substitution of variables
t
w=Mv' = Voo [ asttpn?’, v=1 S P [1 + (v — 1)/ Np, 1 dt
9
makes it possible to rewrite it in a simpler form,
w dlnuy, dw Pw
xtn " o, Frx 2.8)

Thus, at the final stage, the decay of sound pulses is described by a parabolic equa-
tion of the type (2.8) and will, theréfore, become more pronounced than in the case
of a perfect medium, We note that the quantity w = V¥ pof { ague, v’ Which appears
in (2.8) is constant in the geometrical acoustics approximation; this follows from (2, 3).

The author expresses his gratitude to O, S, Ryzhov for his valuable comments on this
work.
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THREE-DIMENSIONAL RUNNING WAVES

IN A BAROTROPIC GAS
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The equations of potential wriple waves in a barotropic gas with an arbiwrary equation

of state are obtained. The properties of the solutions for contiguous flows of the double-
and wiple-wave type are investigated. The solutions of certain three- dimensional self-
similar-problems of three pistons are solved in the case of a "heavy" gas with a high
initial velocity of sound, These problems concern three planes forming an infinite tri-
hedral angle within which the gas is at rest at the instant ¢=0 , whereupon the pla-
nes begin to retract from the gas at high constant velocities.

1. A system of equations of triple waves for a polytropic gas in the hodograph space
of the velocities uy, u,, uy was derived in [1] . Double waves in a barotropic gas for
nonsteady gotential two-dimensional flows were considered in [*] (see also Suchkov,
Applying the method of differential constraints to gas dynamics problems, Candidate'’s
thesis, Siberian Branch of the Academy of Sciences USSR, Novosibirsk), Some of the
results of [3] constitute minor generalizations of the results obtained in [*4] for a poly-
tropic gas.

The %,quations of potential unsteady third-rank waves [!] for a gas with the equation
of state p = f(p) (p Iis the pressure, p is the density) can be derived exactly as for a
polytropic gas. Proceeding as in [*], we introduce as our unknown functions the en-~

thalpy

H (uy, us, u3) = S %}-’-
and the "deployment” function
3
IT (uy, us, us) = 2 2pty— 9 — tH — : -;- L (us® + ug? +'us’) (1.1)

A==}

Here z, are Cartesian coordinates and ¢ is the velocity potential. We obtain the
following system of equations for these functions & and II :



