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Approximate equations of short waves propagatin in a moving, inhomogeneous, vis- 
cous and heat conducting medium are derived. +h ese equations include the principal 
nonlinear and dissipative terms, and make possible the description of the two-dimen- 
sional structure within the wave. Two limiting cases of the problem on propa ation of 
sound impulses are considered. The exact particular solution is obtained for B e case 
when the influence of the dissipative terms is vanishingly small, i.e. when the med- 
ium can be assumed perfect, and this solution in turn yields the laws of decay of weak 
shock waves in a moving ~nhomogeno~ nonviscous 
These laws were investigated before in 11-S ], but B 

as with zero heat conductivity. 
ey were obtained for the first time 

as the result of a straightforward solution of the first a 
ing the gas flow within the wave, Asymptotic form o P 

proximation equations desccib- 
the sound impulses and the laws 

of decay over very long periods of time are principally governed by the dissipative 
terms, and nonlinear terms are not essential at this stage. 

t. We consider a problem concerning the propagation of sound waves in a moving, 
inhomogenous, viscous and heat conducting medium. Let t denote time: z’, y, s are 
Cartesian coordinates; v is mass velocity vector with components I’%, vyr 0,; gXr g,, gr 
are components of the vector of acceleration due to gravity; p is density; p is pressure; 
a is adiabatic velocity of sound; Icr, A, are the first and second viscosity coefficients; 
x is the heat conductivity coefficient; r is the ratio of specific heats at constant pres- 

sure cP and constant volume cg , and a is the thermal expansion coefficient. Then 
we can write the following closed system of equations describing the flow of an arbitrary 
two-parameter medium in the form [d-e) 

The indices i, i, k 
denote summatiOn. 

assume the values 1, 2 and 3 and, as usual, repeated indices 
Temperature 2’ and specific entropy J can, therefore, be found 

from {fi*aj 

pa% Tds I e&Q? - il’dp), pa%@ I: @p - a'dp 
0.4 

Let now a wave propagate through an unperturbed medium whose parameters voi, pk 
PO,... are known functions of coordinates, and let the differences between the values 
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of these parameters within the wave denoted by vet, pot po,... and the unperturbed val- 
ues be small. We can then assume, as in I’], that the unperturbed flow of the medium 
can be described in terms of the equations for a perfect gas flow, resulting from (1.1) - 
(1.3) when A, = As = x = 0 . 

aPO”Oj -co, ax. J 

In the acoustic approximation, the velocity of the sound wave relative to the gas 
molecules will be equal to the unperturbed velocity of sound, therefore the wave in 
question can be identified with the C+-characteristic r~ (1, I~) = 0 of the equations 
of motion of a perfect gas, which can be obtained within the same approximation from 

PI 

Characteristic curves of (1.6) which coincide, in our approximation, with the bi- 
characteristics of the Euler equations, can be regarded as trajectories of the elements 
of the wavefront surface or as rays I*]. They are given by the following ordinary diff- 
erential equations: 

dxi dnl -- 
dl - ‘01 + ‘Oni’ 7 = ("l"j - 6,j) (1.7) 

Here n, denote the components of the unit vector II normal to the characteristic 
surface and b,, are Kronecker deltas. Since vOtr a,, , as well as their derivatives are 
known, the solutions of (1.6) and (1.7) can be obtained in advance and written as 

‘t (f, ZA) = 0, ziO =xi’(t, z,k), niO =ni’(t, to,,) (1.8) 

where coA denote the coordinates of an initial point defininga certain ray. This ray 
intersects the characteristic surface at the point (t,,“) and the superscript ’ will deno- 
te the quantities taken at this point and depending only on time. Coordinates of (zk”) 
are given by (1.8). 

Let us introduce a moving Cartesian coordinate system z,’ (z,, c,,z~) associated with 
the wave. Formulas for zRo in (1.8) will define the new origin. Since the basic chan- 
ges in the wave take place in the direction normal to the wavefront,. we shall direct 
the +I-axis along the vector II normal to the characteristic. Components ni” are 
given by the last formula of (1.8). Two other axes, z2, tS of the new coordinate sys- 
tem lie in the plane tangential to the characteristic. The actual choice of these axes 
is not essential, but it can be shown that the transformation to new coordinates is sim- 
pler, when the components of two mutually perpendicular unit vectors Q and e, 
satisfy, in the tangent plane, the following differential equations: 

whose solutions 

can also be assumed known in advance. 
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We note that the equations for dq’ldr, de ,I’ I dt, de,i” I dt are not independent, 
consequently an additional condition of uniqueness of the corresponding coordinate 
vector is required for the closure of each system. 

With (1.8) and (1.9) known, we can establish the txansformation formulas relating 
the fixed and moving coordinate systems 

t =t’, X{ = Zf* (t) + ej(* (1) Zj' 

t' = t, ST{’ = t?{j' (t) [Zj - Xj' (l)] 
(Cl1 l s nto) 

We shall assume that the characteristic surface Q (t, zI) = 0 moving through the 
physical space, passes through each of its points once only. Then the formulas (1.8) 
and (1.9) define thfee vectors elo, q*, es0 at any point at that instant at which the 
characteristic passes through it. Let us assign the above triplet of vectors to this point, 
i.e. let us assume that three mutually perpendicular unit vectors e, zz n, e, G r,, e, G 
= *a are given at each point and that their componen$ et) (zJ depend only on the 
coordinates of this point. Projections of the vector v’ at this point on the directions 
defined above will be denoted by v,,‘, vls’, vIB’ , respectively, and they will be rela- 
ted to the components of v’ in the moving coordinate system by the formulas 

(i.il) 

where nl,Tsl.T3r denote the components of n, Q, Is in the new coordinate system. 
Let us now assume that the gas flow in question represents a wave which is not only 

weak, but also short, i.e. that the dimensions of the region in which the perturbations 
are concentrated and, particularly, the characteristic wavelength A (in the n-th dir- 
ection) are small, compared with the radius of curvature of its front and with the cha- 
racteristic size of the inhomogeneity of the medium. We shall denote the smaller of 
the above two quantities by L , and the characteristic size of the wave in the plane 
tangent to its wavefront by A . The excess values of all the parameters vary more 
slowly in this plane, and there are no preferred directions. We shall also denote the 
typical relative values of the longitudinal and transverse components c,,~ and vr,‘, 

VIS’ of the perturbed velocity vector by e and o respectively, assuming at the 
same time that the density, pressure and sound velocity perturbations have the same 
order of smclllness e as v,‘. 

Let us convert to dimensionless variables in the new coordinate system 

21= LAzp, IS = LA$, zI = LAQ, I’=(L/u&fw 

Vd = a,v~x, a0 = aooao~, PO - P00”&?P0”~ PO0 = PoQPoX 

“n ’ = a~vn’x, vrs’ = aOOOvTl’x, vTgf = aooov,3’x 

a’ = amea’x, p’ = poaaoo*ep’x, P’ = Po&P’x 

(1.12) 

Here aoo and poo are constant (along the ray) values of the velocity of sound and 
density at the origin (I,,~) of the ray, all dimensionless quantities accompanied by the 
multiplication cross superscript are of the order of unity and A, e,.o are small compa- 
red with unity. 

Few more remarks are convenient at this point before passing to the process of trans- 
formin 

k 
the initial equations. 

We md that in the short waves the velocity component and the derivatives of all the 
flow parameters in the direction normal to the surface of rhe wavefront exceed in mag- 
nitude the corresponding quantities perpendicular to the normal. Thus we can assume 
that [V] 
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The assumption that A < 8 eliminates the usual case of linearization of the Navier- 
Stokes equations. 

We also introduce the Reynolds, P&let and Prandtl numbers 

NRe = 
pooaoo L puo=oo% L NP, 

‘f3 Al + )ca * N,Ll= x ’ 
-- 

N,, - N, (1.14) 

Viscosity and heat conductivity coefficients are, as usual, of the same order of mag- 
nitude, and sufficiently small for [‘+I 

i/N,, <A, NPr - 1 (1.15) 

to hold. 
The quantities 11, A,, X, and Cpp a, 7 are known functions of state and can be assu- 

med given outside the wave. Their perturbations can be neglected in the first approxi- 
mation since, by (1.15), their inclusion complicates only slightly the computations 
without affecting the final approximate equations 16]. 

By (1.12)) all dimensionless values of the parameters of the unperturbed motion of 
the medium and of their derivatives are of order unity. Compared with them, their 
perturbations are small, and their maximum order is ‘e in the adopted notation. Since 
the dimension of the perturbed region is also small, the gradients in the perturbed zone 
(maximum order e /A) are comparable with the gradients of the initial distributions. 
But in this case the curvatures of the perturbation profiles (maximum order e / A)) 
should be even more si 
unperturbed values of t E 

nificant compared with the curvatures of the distributions of the 
e parameters. This therefore leads to yet another inequality 

lee/Al (1.16) 

Final1 
diagona Y*. 

we note that although the matrix of the corn 
If! 

onents “i, ‘%i, bi, is nearly 
within the wave, i.e. at small (compared wl L) distances from the new 

coordinate ori 
E 

in, the final approximate equations may include the derivatives of the 
components w ose values are nearly zero and these derivatives may, in eneral, 

J 
be of 

order unity. In addition, we must distinguish between the quantities WI and without 
the superscript o since the only 
te system, while thk latter may un B 

urpose of the former is to define the new coordina- 
ergo variation within this system. Although these 

quantities differ little from each other in the perturbed zone, nevertheless the final 
equations include the term arising from these differendes. In 1’1, which deals with 
weak shock waves generated by an airplane moving through an inhomogeneous atmos- 
phere with dissipation. ne lect of the above circumstance is reflected m the approxi- 
mate equation obtained. 1 similar remark is made in [lo]. 

Let us insert (1.12) recalling (1.11)) into the perturbation equations obtained from 
(1.1) - (1.3) after eliminating from the latter the terms corresponding to an unpertur- 
bed flow (1.5) and converting to the moving coordinate system b means of (1.10). 
We shall use the relations (1.11) and (1.13) - (1.16), retaining x e major terms only 
in the resulting expressions. Omittin the complicated derivation, we shall give the 
resultin approximate equations for 8 e short waves (neglecting the multiplication cross 
superscript) 

PI = (Pn” I ao”) %I*, p‘ = pooaoovn’ 

i avnD -- 
0 at 

0 au,; e au,’ 0 auT3’ e lb ’ 
--=-- ,YiTg-= 

-2 
A ax, A ax, ’ A ax3 (i.17) 

au e 
moo vn ax, ‘-+Zl 

dInM’ 
+--7i-- 
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where 

d In (~~'00') 
dt 

%I = Vojnj, u,, = a0 + v,, m = ‘11 p-w? pp/ a (i/P)‘]‘ 

The expression for M” in which the integral was taken along the ray, was integra- 
ted in [rr]. The quantity u,, represents rhe projection of the vector of the so-called 
ray velocity us = agn + v, with which the wavefront surface propagates through the 
medium on the normal to this surface and f denotes the area of the wavefront surface 
element contained within the elementary ray tube (i.e. a tube of small cross section 
generated by the rays). We note that ali the quantities accom 

‘O denend onlv on time. and shall omit this sunerscrint as we1 P 
anied by the superscript 
. 

Thk first do formulas of (1.17) follow from’the equations of continuity and from the 
projection of me Navier-Stokes equation on the rr-axis. Their si 
in our approximation the gas is corn 

s 
ressed adiabatically and that t! 

nificance is that 
e Riemann relation 

characterizing a plane running soun pulse through the medium [‘I holds. The next 
two equations of (1.17) obtained from the projections of the Navier-Stokes equations 
on the zs- and q-axes with the condition o/A = e / A characterizing structurally 
inhomogeneous flows indicate the absence of vortices in the perturbed zone. Thus, 
simplifying continuity equations (1.1) and Navier-Stokes equations (1.2), we also ob- 
tain expressions characterizin 
ear in the last equation of (1. !T 

motions in perfect media. The dissipation terms a 
which follows from the mass trans 

p- 
‘I), 

with allowance for (1. l), (1.2) and from the first two equations of ( f ort equation ( f .3) 
.17). 

In the most general case 8 - 1, a - A, o - A%, A - A’L, i / NRe - As, the equa- 
tions defining the short waves become 

Equations most closely resembling (1.18) are given in 1’1. However, the motion 
within the wave was assumed to be immediately quasionedimensional; certain other 
differences already noted are also involved. 

2. We shall now consider short waves with quasionedimensional structure and the 
corresponding condition o< eA, From the last equation of (1.17) we have 

aw 
'az,t (2.1) 

where both principal nonlinear and dissipative terms are retained, and v,’ is replaced 

by v’. 
First let us assume that the dissipative factors in (2.1) can be neglected, 

i lN,,((Ag. In this case (2.1) yields the following equation describing 
in a weak wave propagating in a moving inhomogenous perfect medium 

i.e. that 
the gas flow 

(2.2) 
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If we now omit the second and third terms containing the derivative au / at, from 
the left-hand side of this equation, the equation of geometrical acoustics for the wave- 
fronts will result. This is easily integrated yielding the well known law of variation of 
sound-wave amplitude 14*r**rs] 

f (21) 60 ‘h 
u’=- - 

uOn c. > Pof (2.3 

where the function f (t,) defines the wave profile which does not vary this approxima- 
tion so that its choice is arbitrary. All the same, if we wish to follow the behavior or 
both, the wavefront and the wave profile, then retention of the linear term zr (a’ Inuo,,/ 
/dl) (3~’ / a~,) is advisable even in the acoustic approximation. This term appears as 
a result of the fact that a wave propagates-in an inhomogeneo~ movin atmosphere 
with var 

It is c I 
ing velocity, and this results in “linear” distortion of its profr e. *B 
ear that the acoustic solution will not yield the asymptotic laws of decay of 

perturbations as t -+ 00 , even for a perfect medium. This is obtained simply by sub- 
stituting (2.3) into (2.2) with t’ tending to infinity. 

The asymptotic laws of decay of sound pulses in an inhomogeneous moving medium 
can be obtained from (2.2). As 1 + 00 , the profiles of weak shock waves tend to a 
linear form [‘I and the gas flow behind such waves can be described by the following 
solution of (2.2): 

(2.4) 

where c1 is an arbitrary constant, the integration is carried out along a ray and r0 
coincides with the origin of this ray. 

Let us now obtain the law of variation of the intensity 0,’ of the shock wave along 
the ray. Both the intensity and the wavelength & depend on time only, and the dep- 
endence follows from (2.4). 

The velocity N of pro 
c 

agation of a weak shock wave to within the first order of 
smallness is given in the rxed coordinate system by 1s~‘) 

Taking into account conversion formulas (I.. 10) together with (1.8) and (1.9), we 
have 

dl, _ 1, duo,, 1 
dt -~“ti--pv*’ (2.5) 

Differentiating (2.4) between the quantities u,’ and A, along the trajectory of the 
shock wavefront and use of (2.5) we obtain the following expression for u,’ : 

which on integration yields 
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where es is an arbitrary constant. 
If the amplitude ~0’ and the wavelength A, of the shock wave at : = 5, are both 

piwr;, then we.can find c, and es by substituting these values into (2.7) and setting 
. 

Formulas (2. ‘I) express the well known [17,11] laws of decay of weak shock waves 
in a moving inhomogenous medium, but were arrived at in the present paper by obtain- 
ing the exact solution of the approximate equations derived above. As before, they 
remain valid as long as A, <L. 

In the second limiting case [‘a’] when the time intervals become very long (8 Y 1, 
r.<A,i/Nne - A’) , dissipative factors begin to play a decisive role. Nonlinear 
term in (2. I) can be neglected, yielding 

The substitution of variables 
t 

?‘=I/¶ Po-‘[i+(r-l)/N~r]dl 
s 0 

makes it possible to rewrite it in a simpler form, 

au, dlnu, aw 6% 
7%+4draz,=ar,l (2.8) 

Thus, at the final stage, the decay of sound pulses is described by a parabolic equa- 
tion of the type (2.8) and will, therefore, become more pronounced than in the case 
of a perfect medium. We note that the quantity w = ?~s~v’ which appears 
in (2.8) is constant in the geometrical acoustics approximation; this follows from (2.3). 

The author expresses his gratitude to 0. S. Ryzhov for his valuable comments on this 
work. 
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The equations of potential triple waves in a barotropic gas with an arbitrary equation 
of state are obtained. The properties of the solutions for contiguous flows of the double- 
and triple-wave ty 

P 
e are investigated. The solutions of certain three- dimensional self- 

similar.problems o three pistons are solved in the case of a “heavy” gas with a high 
initial velocity of sound. These problems concern three planes forming an infinite tri- 
hedral angle within which the gas is at rest at the instant : - 0 , whereupon the pla- 
nes begin to retract from the gas at high constant velocities. 

1. A system of equations of ui le waves for a polytropic gas in the hodograph space 
I!. . of the velocities ur, u,, us was erived in [r] . Double waves in a barouopic gas for 

two-dimensional flows were considered in 1’1 (see also Suchkov, 
of differential constraints to gas d namics problems. Candidate’s 

of the Academy of Sciences U 6 SR, Novosibirsk). Some of the 
resuli of Ia] constitute minor generalizations of the results obtained in [at’] for a poly- 
tropic gas. 

The equations of potential unsteady third-rank waves [I] for a gas with the equation 
of state p = t (p) (p is the pressure, p is the density) can be derived exactly as for a 
polytropic gas. Proceeding as in I11 , we introduce as our unknown functions the en- 

thalpy 

and the “deployment” function 

Here ta are Cartesian coordinates and cp is the velocity potential. We obtain the 
following system of equations for these functions a and Tl : 


